Complete Java Chetasheet

~Developer Shaurya

Important Links

Java Cheatsheet:
https://developershaurya.com/rustcheatsheet/

Website: https://developershaurya.com/

All CheatSheets:
https://developershaurya.com/cheat-sheets/

Youtube:
https://www.youtube.com/@DeveloperShaurya

Developer Shaurya Community:
https://t.me/developer_shaurya (Telegram)

https://developershaurya.com/java-complete-cheatsheet/
https://developershaurya.com/
https://developershaurya.com/cheat-sheets/
https://www.youtube.com/@DeveloperShaurya
https://t.me/developer_shaurya

Java Complete Cheatsheet — 2025 Ultimate
Edition

by Developer Shaurya + October 22,2025 - £ 0

1. Basic Structure & Syntax

class Main {
public static void main(String[] args) {
System.out.println("Hello, World!");

Comments

// Single line
J* Multi-line */

2. Data Types & Variables

Type Example Bytes
byte 127 1
short 32000 2
int 100000 4
long 100000L 8
float 3.14f 4
double 3.14159 8
char A 2
boolean true/false 1
String “Hello” varies

Type Casting

int x = 18;
double v = x;
int z = (int) y;

[/ implicit
[/ explicit

3. Operators

+ - F [t —-,== 1= > < >= <=8 || = 4= -= *= [=& | M~ << 3> >

4. Control Flow

if (x > 1) { }
else if (x == 18) { }
else { }

Switch (Modern)

int day = 2;

String result = switch (day) {
case 1 -> "Mon";
case 2 -» "Tue";
default -> "Weekend";

s

Loops

for (int 1 = 8; 1 < 5; i++) { }
while (condition) { }

do { } while (condition);

for (int i : arr) { }

5. Methods

static int add(int a, int b) { return a + b; }

Overloading

void print(int a) {}
void print(String s) {}

6. OOP: Classes & Objects

class Car {

String color;

Car(String color) { this.color = color; }

void drive() { System.out.println(color + " car drives"); }
b
Car ¢ = new Car("Red");

c.drive();

7. Access Modifiers

Modifier Scope

public Everywhere

protected Same package + subclass
default Same package

private Same class

8. Inheritance

class Vehicle { void move(){} }

class Car extends Vehicle { void move(){ System.out.println("Car moves"); }

i

super() — calls parent constructor or method.

9. Polymorphism

Vehicle v = new Car();

v.move(); // Car’s version

10. Abstraction

Abstract Class

abstract class Animal { abstract void sound(); }

class Dog extends Animal { void sound(){ System.out.println("Bark™); } }

Interface

interface Animal {
void eat();

default void sleep() { System.out.println("Sleeping”); }

11. Encapsulation

class Person {
private String name;
public String getMName(){ return name; }

public void setName(5tring n){ this.name = n; }

12. Packages

package com.example;

import java.util.#¥;

13. Exception Handling

try {
int x = 18/0;

} catch (ArithmeticException e) {
System.out.println(e);

} finally {

System.out.println("Always runs");

Custom Exception

class MyException extends Exception {

MyException(String msg){ super(msg); }

Try-With-Resources

try (Scanner sc = new Scanner({System.in)) {

sc.nextLine();

14. Arrays

int[] nums = {1,2,3};
int[][] matrix = {{1,2}, {3,4}};

15. Strings

String s = "Hello";
s.length(); s.charAt(0); s.equals("Hi");
s.toUpperCase(); s.substring(1);

16. Wrapper Classes

Primitive Wrapper
int Integer
char Character
boolean Boolean
double Double

17. Collections Framework

List

List<String> list = new ArraylList<>();
list.add("A");

Set

Set<Integer> set = new HashSet<>();

Map

Map<Integer, String> map = new HashMap<>();
map.put(l, "A");

Queue

Queue<String> g = new LinkedlList<>();
g.add("Task");

18. Generics

class Box<T> { T val; Box(T val){this.val=val;} }
Box<Integer> b = new Box<>(5);

19. Lambda & Functional Programming

List<Integer>» nums = List.of(1,2,3);

nums . forEach(n -> System.out.println(n));

Functional Interface

@FunctionallInterface

interface Greet { void say(String msg); }

20. Stream API

List<Integer> even = nums.stream()
filter(n -> n%2==0@)
.map(n -> n*2)
.tolist();

Common methods: filter(), map(), reduce(), collect(), forkEach()

21. Optional

Optional<S5tring> name = Optional.ofNullable("Ravi");

name.ifPresent(System.out::println);

22. Multithreading

Extending Thread

class MyThread extends Thread {
public void run(){ System.out.println("Running”); }

¥
new MyThread().start();

Runnable Interface

Runnable r = () -> System.out.println("Thread running");
new Thread(r).start();

Executors (Modern)

ExecutorService pool = Executors.newFixedThreadPool(2);
pool.submit(() -> System.out.println("Task")};
pool . shutdown();

23. Synchronization

synchronized void printNumbers(){ ... }

24. Concurrent Utilities

Lock lock = new ReentrantlLock();
CountDownlLatch latch = new CountDownlLatch(3);

AtomicInteger count = new AtomicInteger(@);

25. File 1/O

try (FileWriter fw = new FileWriter("test.txt")) {
fw.write("Hello");

BufferedReader br = new BufferedReader(new FileReader("test.txt"));
System.out.println(br.readlLine());

26. Networking

Client-Server Example

!/ Server

ServerSocket ss = new ServerSocket(8888);

Socket s = ss.accept()};

DataInputStream dis = new DatalnputStream(s.getInputStream());
System.out.println(dis.readUTF());

// Client

Socket s = new Socket("localhost"”, 8888);

DataOutputStream dos = new DataOutputStream(s.getOutputStream());
dos.writelUTF("Hello Server");

27. JDBC (Database Connectivity)

import java.sgl.¥*;

Connection con = DriverManager.getConnection(
"jdbc:mysql://localhost:3306/test™, "root", "password");

Statement st = con.createStatement();

ResultSet rs st.executeQuery("SELECT * FROM users");

while(rs.next()) System.out.println(rs.getString("name"));

con.close();

28. Reflection API

Class<?>» ¢ = Class.forName("java.lang.5tring");
Method[] methods = c.getDeclaredMethods();
for (Method m : methods) System.out.println(m.getName());

29. Annotations

@interface MyAnno { String value(); }
@MyAnno("Hello™)
public class Test {}

Built-in: @Override, @Deprecated, @SuppressWarnings, @FunctionalInterface

30. Serialization

ObjectOutputStream oos = new ObjectOutputStream(new
FileOutputStream("obj.ser™));
oos.writeObject(obj);

oos.close();

ObjectInputStream ois = new ObjectInputStream(new
FileInputStream("obj.ser™));

MyClass obj = (MyClass) ois.readObject();

31. Java Modules (Java 9+)

module-info.java

module com.app {
requires java.sgl;

exports com.app.service;

32. Design Patterns (Essentials)

Pattern Description

Singleton One instance globally

Factory Creates objects without exposing logic
Builder Step-by-step object creation
Observer Notify all dependents on change
Strategy Choose algorithm dynamically
Decorator Add features dynamically

Adapter Convert one interface to another

33. JVM & Memory

Area Description

Heap Objects

Stack Method calls

Method Area Class info

PC Register Thread execution point
GC Automatic cleanup

34. Performance & GC

Use flags:

Jjava -Xms512m -¥Xmx1824m MyApp

GC Types: Serial, Parallel, G1, ZGC (Java 15+)

35. Security

MessageDigest md = MessageDigest.getInstance("SHA-256");

byte[] hash

= md.digest("password".getBytes());

36. Modern Java Features (14-21)

Version Feature Example
14 Switch Expressions case 1 -> "One";
15 Text Blocks "UrUMulti-line™™"
record Point(int x, int
16 Records
y) {}
sealed class Shape
17 Sealed Classes
permits Circle {}
Thread. startVirtualThrea
19 Virtual Threads
d(() -> {});
21 Pattern Matching for Switch case String s -> ...;

37. Testing (JUnit 5)

import org.junit.jupiter.api.Test;

import static org.junit.jupiter.api.Assertions.*;

class CalcTest {
@Test
void addTest() {
assertEquals(4, 2 + 2);

38. Build Tools

Maven

pom.xml — dependency management

Gradle

build.gradle — modern alternative

	Complete Java Chetasheet
	~Developer Shaurya

