Complete Rust Cheatsheet

~ Developer Shaurya

Important Links

Rust Cheatsheet: https://developershaurya.com/rust-
cheatsheet/

Website: https://developershaurya.com/

All CheatSheets:

https://developershaurya.com/cheat-sheets/

Youtube: https://www.youtube.com/@DeveloperShaurya

Developer Shaurya Community:

https://t.me/developer _shaurya (Telegram)

https://developershaurya.com/rust-cheatsheet/
https://developershaurya.com/rust-cheatsheet/
https://developershaurya.com/
https://developershaurya.com/cheat-sheets/
https://www.youtube.com/@DeveloperShaurya
https://t.me/developer_shaurya

CheatSheet

RUST CHEATSHEET — A Quick Guide for Beginners
& Developers

by Developer Shaurya - November 26,2025 - £ 0

Rust Complete Cheatsheet

(Beginner — Advanced — Expert — System-level)

Content Table

1. BASIC SYNTAX

s Print

» Comments

= Variables

» Shadowing
2. DATATYPES

« Scalars

+ Compound Types
» String Types
3. OWNMNERSHIP & BORROWING

+ Move

s« Clone

« Borrow

» Borrowing Rules
4. CONTROL FLOW
5. FUNCTIONS & CLOSURES

« MNormal

» Closures

» Closure Traits
6. STRUCTS

« Tuple Struct

e« Unit struct
« 7.ENUMS + PATTERN MATCHING

« Patterns

s Guards

8. TRAITS (Interfaces)

+« Basic
» Trait Objects

+ Associated Types
» Default Type Params

9. GENERICS

+ Common Bounds

10. MODULES

= File Structure

- Visibility

» Re-exports
11. COLLECTIONS

« ‘ector
« HashMap
+» HashSet, BTreeMap, VecDeque

12. ITERATORS

« Methods
s Custom lterator
13. ERROR HANDLING

+ Option
= Result
» Custom Errors
14. FILE /O
15. MACROS (COMPLETE)

« Declarative (macro_rules!)

+ Procedural Macros

+ Built-in macros
16. ADVANCED PATTERN MATCHING

17. MEMORY & POINTERS

Smart pointers

Raw Pointers (Unsafe)

18. UNSAFE RUST (FULL)

When needed:

Unsafe block

Foreign Function Interface

19. ASYNC & FUTURES

20.

Basic async

Future trait

Pinning

Send & Sync

Tokio

CONCURRENCY (ADVANCED)

Channels
Atomics
Threads

21. TESTING

Unit Tests

Integration Tests

Benchmarks

22. CARGO (FULL)

Commands
Features
Workspaces

Build scripts

23. CRATES YOU MUST KNOW

24 RUST COMPILER / LIFETIME ADVANCED

+ Lifetime elision rules

» Istatic lifetime
25. LOW-LEVEL RUST

s Unions

» Memory Layout

= Bitflags
26. ADVANCED MATCHING + GENERATORS
27. WASM
28. BUILDING CLI APPS
29. RUST STANDARDS & BEST PRACTICES
30. RUST PHILOSOPHY

1. BASIC SYNTAX

Print

println!("Hello {}", name);
dbg! (value);

Comments

[/ single line
/¥ multi line #*/

Variables

let x = 5; [/ immutable

let mut y = 10; // mutable

const PI: 32 = 3.14;

static GLOBAL: i32 = 5; !/ global

Shadowing
let x = 5;
let x = x + 1;

2. DATA TYPES

Scalars

18 116 132 i6d 1128 isize
ug ulé w32 ubd ul28 usize
32 fe4a

bool char

Compound Types

let tup: (i32, bool) = (18, true);
let arr: [i32; 4] = [1, 2, 3, 4];
let slice = &arr[l..3];

String Types
&str [/ string slice
String // heap string
Cow<' , str> // clone-on-write
OsS5tring, 0sStr [/ 05-safe

CString, CStr // C interop

3. OWNERSHIP & BORROWING

Move

let a = String::from("hi");

let b = a; J/ move, a invalid
Clone

let b = a.clone();
Borrow

fn foo(s: &String) {1}
fn bar(s: &mut String) {}

Borrowing Rules

v/ One mutable reference OR
v/ Many shared references
X Not both at the same time

4. CONTROL FLOW

if condition { }
else { }

match x {
1 =» println!("one™),
2..=5 =>» println!("range™),
_=> 0,

if let Some(v) = option {}
while let Some(v) = iter.next() {}

5. FUNCTIONS & CLOSURES

Normal

fn add(a: i32, b: i32) -» i32 { a + b }

Closures
let f = |x]| x + 1;
let g = move |x| x + y;

Closure Traits

» Fn—read-only
« FnMut —mutable captures

s FnOnce — consumes values

6. STRUCTS

struct User { name: String, age: u32 }

impl User {
n greet(&self) {}
tn grow(&mut self) { self.age += 1; }

Tuple Struct

struct Color(u8, u8, ud);

Unit struct

struct Marker;

7. ENUMS + PATTERN MATCHING

enum ResultType {

Success(String),
Error(i32),
h
Patterns

let (a, b) = (1, 2);
let Point { x, v } = p;
let Some(v) = opt else { return };

Guards

match x {
x if x » 18 => {}

_=>{}

8. TRAITS (Interfaces)

Basic

trait Speak { fn say(&self); }
impl Speak for Dog { fn say(&self) {} }

Trait Objects

let obj: Box<dyn Speak> = Box::new(Dog});

Associated Types

trait Iterator {
type Item;
fn next(&mut self) -> Option<Self::Item>;

Default Type Params

trait A<T = u32> {}

9. GENERICS

fn largest<T: PartialOrd>(a: T, b: T) -> T { ifa>b { a }else {b } }

Common Bounds

T: Clone + Debug + Copy + Send + Sync + 'static

10. MODULES

File Structure

src/

F—— main.rs
I— lib.rs

L— utils/
L — mod.rs

Visibility

pub
pub(crate)
pub(super)

pub(in crate::mod)

Re-exports

pub use crate::utils::helper;

11. COLLECTIONS

Vector

let mut v = vec![1,2,3];
v.push(18);
v.pop();

HashMap

let mut m = HashMap::new();

m.insert("a", 1);

HashSet, BTreeMap, VecDeque

use std::collections::#;

12. ITERATORS

Methods

map, filter, find, position,
fold, collect, flatten,

enumerate, zip

Custom lterator

impl Iterator for Counter {
type Item = i32;
fn next(&mut self) -» Option<Self::Item> { ... }

13. ERROR HANDLING

Option

opt.unwrap();
opt.unwrap_or{@);

opt.ok _or("error")?;
Result

let x: Result<i32, String> = 0Ok(18);

? operator for propagation

Custom Errors

thiserror

anyhow

14.FILEI/O

fs::read to string("a.txt™)?;
fs:iwrite("b.txt", data)?;

15. MACROS (COMPLETE)

Declarative (macro_rules!)

macro_rules! add {
($a:expr, $b:expr) => { $a + $b };

Procedural Macros

+ Derive macros
s Function-like macros

+ Attribute macros

#[proc_macro_derive(MyDerive)]

pub fn my derive(input: TokenStream) -»> TokenStream {}

Built-in macros

println!
format!

vec!
macro_rules!
todo!
unreachable!

unimplemented!

16. ADVANCED PATTERN MATCHING

» Nested matches
» By-reference patterns

+ Slices in match

match slice {
[a, b, rest @ ..] => {}

17. MEMORY & POINTERS

Smart pointers

* Box<T>—heap alloc

+ Rc<T» —shared ownership

» Arc<T> —thread-safe reference counter
+ RefCell<T> —runtime borrow checking
+ Cell<T> - copy-type mutability

» Mutex<T>/RwlLock<T> - thread locks

Raw Pointers (Unsafe)

let a
let p

16;

&a as *const 132;

18. UNSAFE RUST (FULL)

When needed:

= Raw pointer dereferencing

« FFI

+ Calling unsafe functions

» Implementing unsafe traits

= Accessing mutable static variables

+ Using union

Unsafe block

unsafe {

*ptr = 10;

Foreign Function Interface

extern "C" {

fn printf(...);

19. ASYNC & FUTURES

Basic async

async fn foo() -» i32 { 1@ }

foo().await;

Future trait

pub trait Future {
type Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context);

Pinning

use std::pin::Pin;

Send & Sync

T: Send /{ thread-safe move

T: Sync [/ reference shared safely across threads

Tokio

#[tokio: :main]

async fn main() {}

20. CONCURRENCY (ADVANCED)

Channels

mpsc: :channel();
sync_channel();

crossbeam_channel ;
Atomics

AtomicUsize, AtomicBool

Threads

thread: :spawn(|]| {});

21. TESTING

Unit Tests

#[test]
fn test_add() {
assert_eq!(add(2,3), 5);

Integration Tests

tests/testl.rs

Benchmarks

cargo bench

22. CARGO (FULL)

Commands

cargo new, build, run, fmt, clippy, doc
Features

[features]
default = ["json™]
json = []

Workspaces

[workspace]

members = [“"core”, "app"]

Build scripts

build.rs

23. CRATES YOU MUST KNOW

» serde — serialize/deserialize

+ tokio / async-std — async runtime

+ reqwest — HTTP client

» tracing - logging

« anyhow — easy errors

» thiserror — ergonomic custom errors
+ chrono — date/time

* rayon — parallel iterators

» dashmap — concurrent HashMap

24. RUST COMPILER / LIFETIME ADVANCED

Lifetime elision rules
1. Each parameter gets its own lifetime
2. One input — output same lifetime

3. For &self methods — output = self

‘'static lifetime

let x: &'static str = "hello";

25. LOW-LEVEL RUST

Unions

union MyUnion {
f: 32,
i: 132,

Memory Layout

#[repr(C)]
struct CCompatible { a: i32, b: 32 }

Bitflags

bitflags::bitflags! {
struct Flags: u32 {
const A = 0bogeel;

26. ADVANCED MATCHING + GENERATORS

Rust has experimental:

= async fn generators

+ yield statements (nightly)

27. WASM

wasm-bindgen
web-sys

js-sys

28. BUILDING CLI APPS

clap = "4"

29. RUST STANDARDS & BEST PRACTICES

W/ Prefer &str over String in APls

v/ Avoid clone() unless needed

+/ Don't use unwrap() in production

v/ Use ? for error propagation

V' Use clippy for linting

V' Write small modules

/ Avoid Rc<RefCell<T>> in multithreaded code

V' Prefer Arc<Mutex<T>»> or channels

30. RUST PHILOSOPHY

» Zero-cost abstractions
» Fearless concurrency

« Memory safety without garbage collection

	Complete Rust Cheatsheet
	~ Developer Shaurya

